Tight-binding molecular dynamics simulations of semiconductor alloys: clusters, surfaces, and defects
نویسندگان
چکیده
We extend the tight-binding molecular dynamics technique to simulations of III–V semiconductor alloy clusters, surfaces, and defects. The total energy of the alloy system is calculated using a newly developed tight-binding parametrization of ab initio band structures of bulk alloys and their pure components, for different structures and lattice parameters. The nonlocal binding in the lattice is compensated by pairwise repulsion to reproduce the ab initio total energies. Molecular dynamics techniques are incorporated into the tight-binding total energy scheme following the prescription of Khan and Broughton (Khan F S and Broughton J Q 1989 Phys. Rev. B 39 8592). The method is used to study small GamAsn clusters, the GaAs(110) surface, and an As vacancy in bulk GaAs. Good agreement with previous studies and available experimental results is obtained in each case.
منابع مشابه
Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملTight binding molecular dynamics study of Ni clusters
A minimal parameter tight binding molecular dynamics scheme is used to study Nin clusters with n<55. We present theoretical results for relaxed configurations of different symmetries, binding energies, and normal vibrational frequencies for these clusters. Our results are in good agreement with experiment and previous theoretical predictions. We also compare relative stabilities of fcc structur...
متن کاملCalculation for Energy of (111) Surfaces of Palladium in Tight Binding Model
In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملAccuracy of existing atomic potentials for the CdTe semiconductor compound.
CdTe and CdTe-based Cd(1-x)Zn(x)Te (CZT) alloys are important semiconductor compounds that are used in a variety of technologies including solar cells, radiation detectors, and medical imaging devices. Performance of such systems, however, is limited due to the propensity of nano- and micro-scale defects that form during crystal growth and manufacturing processes. Molecular dynamics simulations...
متن کامل